On the Vector Valued Fourier Transform and Compatibility of Operators*
نویسنده
چکیده
is the dual group of G, and p ′ the conjugate exponent of p. An operator T between Banach spaces X and Y is said to be compatible with the Fourier transform F G if F G ⊗ T : Lp(G)⊗X → Lp′ (G ′ )⊗ Y admits a continuous extension [F , T ] : [Lp(G), X ] → [Lp′ (G ′ ), Y ]. We show that if G is topologically isomorphic with R×Z×F, where l and m are nonnegative integers and F is a compact group with finitely many components, then an operator is compatible with F G if and only if it is compatible with F . And the same statement holds if G has finitely many components, or is of the form R×[torsion-free group with discrete topology]×[compact group with finite components].
منابع مشابه
Bilateral composition operators on vector-valued Hardy spaces
Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$. We investigate some operator theoretic properties of bilateral composition operator $C_{ph, T}: f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq +infty$. Compactness and weak compactness of $C_{ph, T}$ on $H^p(X)$ are characterized an...
متن کاملA new vector valued similarity measure for intuitionistic fuzzy sets based on OWA operators
Plenty of researches have been carried out, focusing on the measures of distance, similarity, and correlation between intuitionistic fuzzy sets (IFSs).However, most of them are single-valued measures and lack of potential for efficiency validation.In this paper, a new vector valued similarity measure for IFSs is proposed based on OWA operators.The vector is defined as a two-tuple consisting of ...
متن کاملPOINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS
The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let be a non-emp...
متن کاملOperator Valued Series and Vector Valued Multiplier Spaces
Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous linear operators from $X$ into $Y$. If ${T_{j}}$ is a sequence in $L(X,Y)$, the (bounded) multiplier space for the series $sum T_{j}$ is defined to be [ M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}% T_{j}x_{j}text{ }converges} ] and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...
متن کاملRemarks on the Paper ``Coupled Fixed Point Theorems for Single-Valued Operators in b-Metric Spaces''
In this paper, we improve some recent coupled fixed point resultsfor single-valued operators in the framework of ordered $b$-metricspaces established by Bota et al. [M-F. Bota, A. Petrusel, G.Petrusel and B. Samet, Coupled fixed point theorems forsingle-valued operators in b-metric spaces, Fixed Point TheoryAppl. (2015) 2015:231]. Also, we prove that Perov-type fix...
متن کامل